Where are we now?

- A brief history of PMD
- Fibre specifications
- System requirements
- Test Standards
- Measurement techniques & equipment

History of PMD: late 90s

- PMD understood and controlled by most major manufacturers
- Telecoms boom creates incredible demand for fibre = 18 month waiting list!
- Shortages suck in fibre from less well-established manufacturers, often with poor PMD
- Measurement problems, bad PMD fibre undetected at one US factory – but fibre was not scrapped
- 10Gb/s systems start to be deployed

History of PMD: 2000

- Oct 2000 ITU G.652 recommends limits on PMD for some grades – 0.5ps/√km
- PMD compensation hot topic
- 2001: telecoms crash – fibre shortage eases – 40Gb/s goes on ice
- 2003: ITU G.652 recommends limits on all grades:
 - ~0.5ps/√km for ‘slower’ A&C grades
 - ~0.2ps/√km for ‘faster’ B&D grades
- Good fibre from reputable suppliers now routinely < 0.05ps/√km

History of PMD: today

New fibre is very, very good, but...

- Lots of old fibre still in use
- Fibre characterisation
- PMD compensation: optical methods still limited and expensive
- PMD tolerance: new coding schemes &/or electronic dispersion compensation
PMD

Where are we now?

- A brief history of PMD
- Fibre specifications
- System requirements
- Test Standards
- Measurement techniques & equipment

Evolution of the Standards

Trends in PMD e.g. ITU G.652

- pre 2000
 - 'under study'
- 2000
 - Not specified (slower grade A)
 - 0.5ps/root km (faster grades B & C)
- 2003 & 2005
 - 0.5ps/root km (slower grades A & C)
 - 0.2ps/root km (faster grades B & D)

Optical Fibres for Telecomms

- **G.652 (A,B,C,D)** (Non-Dispersion Shifted Fibre)
- **G.653** (Dispersion Shifted Fibre)
- **G.654** (Cut-off Shifted Fibre)
- **G.655 (A,B,C,D,E)** (Non-zero Dispersion Shifted)
- **G.656** (Broadband non-zero Dispersion Shifted Fibre)
- **G.657 (A,B)** (Bend tolerant fibre for FTTH)

Others...

- Pure Silica Core, high power
- Dispersion Compensating
- Polarisation Maintaining

Evolution of the Standards

ITU recommendations

- a process of evolution
- many changes
- important to be specific about version e.g.
 - G.652 (1984) v1
 - G.652 (1988) v2
 - G.652 (1993) v3
 - G.652 (1997) v4
 - G.652 A, B, C & D (2005) v7 ...

PMD and System Performance

System design ‘rule of thumb’ states that...

- total PMD for a link should be less than one tenth of bit period
- acceptable probability of outage due to DGD
- e.g. STM-64 @ 10Gb/s
 - bit period = 100ps
 - therefore maximum PMD = 10ps
PMD and System Performance

ITU recommends:
- max PMD of 0.5ps/√km (G.652.A&C) to support 400km @ 10Gb/s
- max PMD of 0.2ps/√km (G.652.B&D) to support 2500km @ 10Gb/s or 156km @ 40Gb/s

PMD measurement standards

IEC International Electro-technical Commission
- Technical Committee 86 fibre optics
- Sub Committee 86C fibre optic systems and active devices
- Working group 1: Fibre optic communications systems and sub-systems

PMD measurement standards from the IEC

- 61280-4-4 Fibre optic communication subsystem test procedures
 - Part 4-4: Cable plants and links: Polarization mode dispersion measurement for installed links
- 61282-9 Fibre optic communication system design guides
 - Part 9: Guidance on polarization mode dispersion measurements and theory

Polarisition Mode Dispersion

Acceptance Criteria

<table>
<thead>
<tr>
<th>Data rate</th>
<th>Max. PMD</th>
<th>Distance for 0.5 ps/√km</th>
<th>Distance for 0.1 ps/√km</th>
<th>Distance for 0.05 ps/√km</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5Gb/s</td>
<td>40ps</td>
<td>6400km</td>
<td>40,000km</td>
<td>160Mm!</td>
</tr>
<tr>
<td>10Gb/s</td>
<td>10ps</td>
<td>400km</td>
<td>2500km</td>
<td>10,000km</td>
</tr>
<tr>
<td>40Gb/s</td>
<td>2.5ps</td>
<td>25km</td>
<td>156km</td>
<td>625km</td>
</tr>
<tr>
<td>100Gb/s</td>
<td>1ps</td>
<td>4km</td>
<td>25km</td>
<td>100km</td>
</tr>
</tbody>
</table>