

>BUSINESS MADE SIMPLE

1

OFC/NFOEC-2007 Workshop "40Gb/s networks and the PMD challenge

Cost impact of PMD on 40G deployment

Kim Roberts

krob@nortel.com

NQRTEL

40 Gbps TDM, a tough problem to solve

> Bit interval reduced from 100ps to 25ps

- Increase electrical bandwidth by a factor of 4
- Increase optical spectrum occupied by a factor of 4 (to ~ 6 RZ)
 - Increased system impact of optical filters
 - Constraints on Line ingress/egress
- > 16 times less tolerance to chromatic dispersion
 - More stringent dispersion map
 - Increased installation difficulties
 - Need to be engineered day one
 - May need active CD compensators over fiber temperature

>4 times less tolerance to PMD

>6 dB drop in noise margin

40G Modulation Cases Considered

	Duo- Binary	DPSK	2-POL QPSK
Reach ¹ [km]	500-800	1200- 1500	1600-2000
CD Tolerance. Assuming a tunable CD compensator ² [pSec/nm]	+/- 400	+/- 400	+/- 50,000
PMD Tolerance ³ [pSec mean]	3.5	3	25
Filter/OADM Tolerance	8	8	>16
100GHz Grid ⁴ [# of ADM Traversed]			

- 1 at identical margin
- 2 at 1dB of OSNR penalty
- 3 at 2dB of OSNR penalty
- 4 at 3dB of OSNR penalty

•Each system "under test" has been designed with equivalent Margin for practical in-the-field deployability and long term operation.

•PMD impact modeling includes 1st order PMD and higher order PMD impact

4

Network Design Assumptions

Fibre Characteristics

Nodal Connectivity: 2.7

- 800 10G demands
- 36% logical mesh
- 4x10G mux aggregates 10G demands into 40G wavelengths
- ROADMs

Same network and demand are scaled for two cases:

	<node-node></node-node>	<a-z></a-z>
	[Km]	[Km]
Regional Network	~250	~600
Long Haul Network	~600	~1500

PMD Distribution

- Node-Node segments were <u>randomly</u> selected and declared PMD candidate
 0 to 40% of the Node-Node
- 2. A PMD value was assigned to each of the fibre spans

Distribution A: Large scale 10G deployment without significant PMD issue

Distribution B: Procedure to take into account PMD at 10G

- 15% to 25% of total network cost
- •2-POL QPSK 40G not impacted by PMD

- No significant difference from Regional A
- The 40G TDM solutions severely impacted by PMD
 - 15% to 25% of total network cost
- 2-POL QPSK 40G not impacted by PMD

- PMD impact slight
 - Regens already required for noise reset PMD

- 40G TDM regens needed for PMD
 - 10% to 40% of total network cost
- 2-POL QPSK 40G tolerates the PMD

Conclusions

> PMD can have a severe impact on total network cost

- Additional regens and/or PMD mitigation devices
- > Current regional networks have hidden PMD issues at 40G
 - 10G was deployed here without issues
- > Long Haul costs very sensitive to PMD
- > A deployable 40G solution needs to tolerate PMD
- > Deployment of ROADMs increase optical distances, aggravating impact of PMD